Cosecha de humedad atmosférica: Nuevos materiales y tecnologías bioinspirados para mitigar la escasez de agua
Contenido principal del artículo
Resumen
La cosecha de agua es un proceso importante para enfrentar la escasez de agua potable en diversas partes del mundo. Problemática que comienza a ser un tema preocupante para la humanidad, debido a la continua contaminación de las fuentes de agua dulce disponibles, así como las causas impredecibles que pueden conllevar los cambios climáticos globales. Esta alternativa implica recolectar y almacenar agua de diferentes fuentes para su uso posterior, lo que puede ser especialmente útil en áreas con acceso limitado al recurso como países con climas áridos y bajos niveles pluviométricos. En años recientes, tecnologías emergentes inspiradas por la naturaleza, se centran en la captación de agua desde la atmósfera, donde la humedad relativa es baja (10-30) %. Para ello se ha generado un profundo estudio de los factores fisicoquímicos y microestructurales que facilitan la captación por parte de algunos sistemas. Esto ha impulsado la innovación de nuevos sistemas sintéticos y su aplicación tecnológica, en particular en arreglos estructurales que han sido perfeccionados evolutivamente por plantas y animales para sobrevivir bajo condiciones climáticas adversas. Es así como, la naturaleza hidrofóbica e hidrofílica que exhiben los sistemas naturales son claves en el diseño de nuevos materiales que permiten mejorar la eficacia de captación de agua. Este aprendizaje puede ser aprovechado por los países del trópico que cuentan con climas cálidos y atmósferas con valores de humedad relativa altas (50-90) %. Tecnologías que pueden ser empleadas para dar acceso a agua potable en zonas remotas y generar autonomía para la irrigación de cultivos.
Descargas
Detalles del artículo
Referencias
World Health Organization (WHO). Drinking water. 2020. https://www.who.int/en/newsroom/fact-heets/detail/drinking- water
Ahrestani Z, Sadeghzadeh S, Motejadded Emrooz HB. An overview of atmospheric water harvesting methods, the inevitable path of the future in water supply. RSC Adv. 2023; 13(15):10273–307. http://dx.doi.org/10.1039/d2ra07733g
Feng A, Akther N, Duan X, Peng S, Onggowarsito C, Mao S, et al. Recent development of atmospheric water harvesting materials: A review. ACS Mater. Au. 2022; 2(5):576–95. http://dx.doi.org/10.1021/acsmaterialsau.2c00027
Wang J, Hua L, Li C, Wang R. Atmospheric water harvesting: critical metrics and challenges. Energy Environ. Sci. 2022; 15(12):4867–71. http://dx.doi.org/10.1039/d2ee03079a
Lu W, Ong WL, Ho GW. Advances in harvesting water and energy from ubiquitous atmospheric moisture. J. Mater. Chem. A Mater. Energy Sustain. 2023; 11(24):12456–81. http://dx.doi.org/10.1039/d2ta09552a
Zhang F, Guo Z. Bioinspired materials for water-harvesting: focusing on microstructure designs and the improvement of sustainability. Mater. Adv. 2020; 1(8):2592–613. http://dx.doi.org/10.1039/d0ma00599a
Zhong L, Zhu L, Li J, Pei W, Chen H, Wang S, et al. Recent advances in biomimetic fog harvesting: focusing on higher efficiency and large- scale fabrication. Mol. Syst. Des. Eng. 2021; 6(12):986–96. http://dx.doi.org/10.1039/d1me00019e
Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun. 2012;3(1). http://dx.doi.org/10.1038/ncomms2253
Knapczyk-Korczak J, Stachewicz U. Biomimicking spider webs for effective fog water harvesting with electrospun polymer fibers. Nanoscale. 2021; 13(38):16034–51.
http://dx.doi.org/10.1039/d1nr05111c
Zheng Y, Bai H, Huang Z, Tian X, Nie F-Q, Zhao Y, et al. Directional water collection on wetted spider silk. Nature. 2010;463(7281):640–3. http://dx.doi.org/10.1038/nature08729
Fritz PW, Coskun A. Postfunctionalized covalent organic frameworks for water harvesting. ACS Cent. Sci. 2022; 8(7):871–3. http://dx.doi.org/10.1021/acscentsci.2c00710
Hu Y, Wang Y, Fang Z, Wan X, Dong M, Ye Z, et al. MOF supraparticles for atmosphere water harvesting at low humidity. J. Mater. Chem. A Mater. Energy Sustain. 2022; 10(28):15116–26. http://dx.doi.org/10.1039/d2ta02026b
Chan KC, Chao CYH, Wu CL. Measurement of properties and performance prediction of the new MWCNT-embedded zeolite 13X/CaCl2 composite adsorbents. Int. J. Heat Mass. Transf. 2015; 89:308-19. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.05.063
Ge P, Wang S, Zhang J, Yang B. Micro-/nanostructures meet anisotropic wetting: from preparation methods to applications. Mater. Horiz. 2020; 7(10):2566–95. http://dx.doi.org/10.1039/d0mh00768d
Zhang Z, Tang H, Wang M, Lyu B, Jiang Z, Jiang J. Metal–organic frameworks for water harvesting: Machine learning-based prediction and rapid screening. ACS Sustain. Chem. Eng. 2023; 11(21):8148–60. http://dx.doi.org/10.1021/acssuschemeng.3c01233
Zheng Z, Hanikel N, Lyu H, Yaghi OM. Broadly tunable atmospheric water harvesting in multivariate metal–organic frameworks. J Am Chem. Soc. 2022; 144(49):22669–75.
http://dx.doi.org/10.1021/jacs.2c09756
Lyu T, Wang Z, Liu R, Chen K, Liu H, Tian Y. Macroporous hydrogel for high-performance atmospheric water harvesting. ACS Appl. Mater.
Interfaces. 2022; 14(28):32433–43.
http://dx.doi.org/10.1021/acsami.2c04228
Nguyen HL, Hanikel N, Lyle SJ, Zhu C, Proserpio DM, Yaghi OM. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J. Am. Chem. Soc. 2020; 142(5):2218–
http://dx.doi.org/10.1021/jacs.9b13094
Knapczyk-Korczak J, Szewczyk PK, Stachewicz U. The importance of nanofiber hydrophobicity for effective fog water collection. RSC Adv. 2021; 11(18):10866–73. http://dx.doi.org/10.1039/d1ra00749a
Uddin MN, Desai FJ, Rahman MM, Asmatulu R. A highly efficient fog harvester of electrospun permanent superhydrophobic– hydrophilic polymer nanocomposite fiber mats. Nanoscale Adv. 2020; 2(10):4627–38. http://dx.doi.org/10.1039/d0na00529k
Song M, Zhu Z, Qi J, Zhou Y, Li J. Multifunctional and asymmetrically superwettable Janus membrane for all-day freshwater harvesting. Environ. Sci. Nano. 2023; 10(4):996–1002. http://dx.doi.org/10.1039/d2en01099b
Bae C, Oh S, Han J, Nam Y, Lee C. Water penetration dynamics through a Janus mesh during drop impact. Soft Matter. 2020; 16(26):6072–81. http://dx.doi.org/10.1039/d0sm00567c
He F, Wu X, Gao J, Wang Z. Solar-driven interfacial evaporation toward clean water production: burgeoning materials, concepts and technologies. J. Mater. Chem. A Mater. Energy Sustain. 2021; 9(48):27121–
http://dx.doi.org/10.1039/d1ta08886f
Xu J, Li T, Yan T, Wu S, Wu M, Chao J, et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ. Sci. 2021; 14(11):5979–94.
http://dx.doi.org/10.1039/d1ee01723c
Kabir A, Dunlop MJ, Acharya B, Bissessur R, Ahmed M. Water recycling efficacies of extremely hygroscopic, antifouling hydrogels. RSC Adv. 2018; 8(66):38100–7. http://dx.doi.org/10.1039/c8ra07915c
Aleid S, Wu M, Li R, Wang W, Zhang C, Zhang L, et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Mater. Lett. 2022; 4(3):511–20. http://dx.doi.org/10.1021/acsmaterialslett.1c00723
Entezari A, Ejeian M, Wang R. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts. ACS Mater. Lett. 2020; 2(5):471–7.
http://dx.doi.org/10.1021/acsmaterialslett.9b00315
Li R, Shi Y, Alsaedi M, Wu M, Shi L, Wang P. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environ. Sci. Technol. 2018; 52(19):11367–
http://dx.doi.org/10.1021/acs.est.8b02852
Atencio R, Chacón M, González T, Briceño A, Agrifoglio G, Sierraalta A. Robust hydrogen-bonded self-assemblies from biimidazole complexes. Synthesis and structural characterization of [M(biimidazole)2(OH2)2]2+(M = Co2+, Ni2+) complexes and carboxylate modules. Dalton Trans. 2004; (4):505–13. http://dx.doi.org/10.1039/b312541f
Atencio R, Briceño A, Galindo X. A mesoporous hydrogen-bonded organic–inorganic framework bearing the isopolymolybdate [Mo36O112(OH2)16]8−. Chem. Commun. (Camb). 2005; (5):637–9.
http://dx.doi.org/10.1039/b413825b
Atencio R, Liendo G, Briceño A, Silva P, Beurroies I, Dieudonné P, et al. Reversible phase transitions in a coordination 1D-polymer containing an unusual hexatungstate building block. Cryst. Growth Des. 2019; 19(4):2485–92. http://dx.doi.org/10.1021/acs.cgd.9b00157
Zambrano B, Cañizalez E, Silva P, Briceño A. A bottom-up route for the preparation of novel hierarchical nanostructured hybrid molybdenum oxide–hydrogel composites. New J. Chem. 2011; 35(2):288–
http://dx.doi.org/10.1039/c0nj00671h
Avendaño C, Briceño A, Méndez FJ, Brito JL, González G, Cañizales E, et al. Novel MoO2/carbon hierarchical nano/microcomposites: synthesis, characterization, solid state transformations and thiophene
HDS activity. Dalton Trans. 2013; 42(8):2822–30. http://dx.doi.org/10.1039/c2dt31248d
Trujillo P, Brito JL, González G, Briceño A. Novel MoO2/carbon hierarchical nano/microcomposites: synthesis, characterization, solid state transformations and thiophene HDS activity. Ind S Eng. Chem. Res. 2019,58(32), 14761-14774.
http://dx.doi.org/10.1021/acs.iecr/9b02020
Arevalo-Féster J, Briceño A. Insights into selective removal by dye adsorption on hydrophobic vs multivalent hydrophilic functionalized MWCNTs. ACS Omega. 2023, 8(12), 11233-11250.
http://dx.doi.org/10.1021/acsomega/ 2c08203
Yang K, Pan T, Lei Q, Dong X, Cheng Q, Han Y. A roadmap to sorption-based atmospheric water harvesting: From molecular sorption mechanism to sorbent design and system optimization. Environ. Sci. Technol. 2021; 55(10):6542–60. http://dx.doi.org/10.1021/acs.est.1c00257