Cu₃TaTe₄: Medidas de síntesis, difracción de rayos X, microscopía electrónica de barrido y reflectancia difusa Recibido: /marzo, 2021. Aceptado: /abril, 2021.
Contenido principal del artículo
Resumen
En la presente investigación fueron preparadas muestras policristalinas de Cu3 TaTe4 por el método de fusión y recocido. Se realizaron medidas de difracción de rayos X (DRX) y espectroscopía de reflectancia difusa (ERD) para verificar la estructura cristalina y calcular las brechas de energía directa e indirecta. Los resultados mostraron un parámetro de red a = 5, 9082 Å, una estequiometría deficitaria en Ta del 17,8 %, una brecha de energía indirecta Eig = 0, 38 eV y una brecha de energía directa Edg = 2, 38 eV. Los análisis confirman que el Cu3 TaTe4 puede ser empleado como absorbente p-tipo para células solares de películas finas con las ventajas de que sus elementos presentan baja toxicidad y tienen costos menores a los empleados en la actualidad.
Descargas
Detalles del artículo
Referencias
R. Prado-Rivera, C.-Y. Chang, M. Liu, C.Y. Lai, and D.R. Radu. Sulvanites: The Promise at the Nanoscale. Nanomaterials, 11:823, 2021. https://doi.org/10.3390/nano11030823.
A. B. Kehoe, D. O. Scanlon, and G. Watson. The Electronic Structure of Sulvanite Structured Semiconductors Cu₃MCh₄ (M V, Nb, Ta; Ch=S, Se, Te): Prospects for Optoelectronic Applications. Journal of Materials Chemistry C3, C3(12236), 2015. https://doi.org/10.1039/c5tc02760h.
M. A. Ali, N. Jahan, and A. K. M. A. Islam. Sulvanite Compounds Cu₃TMS₄ (TM = V, Nb, and Ta): Elastic, Electronic, Optical, and Thermal Properties using First-Principles Method. Journal Science Research, 6(3):407–419, 2014. http://dx.doi.org/10.3329/jsr.v6i3.19191.
W.F. Espinosa-Garcı́a, C.M.Ruiz-Tobón, and J.M.Osorio-Guillén. The Elastic and Bonding Properties of the Sulvanite ComPounds: A Girst-principles Study by Local and Semi-local Functionals. Physica B: Condensed Matter, 406(20):3788–3793, 2011. https://doi.org/10.1016/j.physb.2011.06.060.
J.M. Osorio-G. and W.F. Espinosa-G. A First-principles Study of the Electronic Structure of the Sulvanite Compounds. Physica B: Condensed Matter, 407(6):985–991, 2012. https://doi.org/10.1016/j.physb.2011.12.126.
P. Linus and H. Ralph. The Crystal Structure of Sulvanite, Cu₃VS₄ . Zeitschrift für Kristallo- Graphie – Crystalline Materials, 84(1–6):204– 212, 1993. https://doi.org/10.1524/zkri. 1933.84.1.204.
M.A. Ali, M. Roknuzzaman, M.T. Nasir, A.K.M.A. Islam, and S.H. Naqib. Structural, Elastic, Electronic, and Optical Properties of Cu₃MTe₄ (M= Nb, Ta) Sulvanites, an Ab Initio Study. International Journal Modern Physics B, 1650089, 2016. https://doi.org/10.1142/S0217979216500892.
W.F. Espinosa-G. and S. Pérez-W. and J.M. Osorio-G. and C. Moyses- A. The Electronic and Optical Properties of the Sulvanite Compounds: A Many-Body Perturbation and Time-Dependent Density Functional Theory Study. Journal Physics: Condensed Matter, 30:035502, 2018. https://doi.org/10.1088/1361-648X/aa9deb.
A.B. Kehoe and D.O. Scanlon and G.W. Watson. Modelling Potential Photovoltaic Absorbers Cu₃MCh₄ (M=V, Nb, Ta; Ch=S, Se, Te) Using Density Functional. Journal Physics: Condensed Matter, 28:175801, 2016. https://doi.org/10.1088/0953-8984/28 /17/175801.
X.P. Liu, Z.Z. Feng, S.P. Guo, Y. Xia, and Y. Zhang. Promising Thermoelectric Materials of Cu₃VX₄ (X=S, Se, Te): A Cu-V-X Frame Work Plus Void Tunnels. International Journal of Modern Physics C, 30(8):1950045, 2019. https://doi.org/10.1142/S0129183119500451.
J. Peralta and C. Valencia-B. Vibrational Properties of Cu₃XY₄ Sulvanites (X=Nb, Ta, and V; and Y = S, and Se) by Ab Initio Molecular Dynamics. European Physic Journal B, 90(117), 2017. https://doi.org/10.1140/epjb/e2017-80050-7.
K. Bougherara, F. Litimein, R. Khenata, E. Uçgun, H.Y. Ocak, S. Uğur, G. Uğur, A.H. Reshak, F. Soyalp, and S.B Omran. Structural, Elastic, Electronic, and Optical Properties of Cu₃TMSe₄ (TM=Nb, and Ta) Sulvanite Compounds First-Principles Calculations. Science of Advanced Materials, 5(1):97–106, 2019. https://doi.org/10.1166/sam.2013.1435.
A.J. Hong, C.L. Yuan, G. Gu and M. Liu. Novel P-Type Thermoelectric Materials Cu₃MCh₄ (M=V, Nb, Ta; Ch=Se, Te): High Band-Degeneracy. Journal Materials Chemistry A, 5:9785–9792, 2017. https://doi.org/10.1039/C7TA02178J.
J. Li, H.-Y. Guo, D.M. Proserpio, and A. Sironi. Exploring Tellurides: Synthesis and Characterization of New Binary, Ternary, and Quaternary Compounds. Journal Solid State Chemistry, 117(2):247–255, 1995. https://doi.org/10.1006/jssc.1995.1270.
Y. Liu, M. Liu, and M.T. Swihart. Plasmonic Copper Sulfide-Based Materials: A Brief Introduction to Their Synthesis, Doping, Alloying, and Applications. Journal Physics Chemistry C, 121(25):13435–13447, 2017. https://doi.org/10.1021/acs.jpcc.7b00894.
Y. Li, M. Wu, T. Zhang, X. Qi, G. Ming, G. Wang, X. Quan, and D. Yang. Natural Sulvanite Cu₃MX₄ (M=Nb, Ta; X=S, Se): Promising Visible-light Photocatalysts for Water Splitting. Computational Materials Science, 165:137–143, 2019. https://doi.org/10.1016/j.commatsci.2019.04.042.
W.F. Espinosa-G., C. Valencia-B., and J.M. Osorio-G. Phononic and Thermodynamic Properties of the Sulvanite Compounds: A First Principles Study. Computational Materials Science, 113:275–279, 2016. https://doi.org/ 10.1016/j.commatsci.2015.10.036.
F. Hulliger. New Semiconductor Compounds of the Sulvanite Type. Helvetica Physics Acta, 34:379–382, 1961.
K. Zitter, J. Schmand, K. Wagner, and R. Schöllhorn. Isomer Shifts of the 6.2 KeV Nuclear Transition of Ta-181 in Sulvanite Type Ternary Phases Cu₃TaX₄ (X=S,Se,Te). Material Research Bulletin, 19:801–805, 1984. https://doi.org/10.1016/0025-5408(84)90038-2.
J. Li, H.,Y. Guo, D.M. Proserpio, and A. Sironi. Exploring Tellurides: Synthesis and Characterization of New Binary, Ternary, and Quaternary Compounds. Journal Solid State Chemistry, 117:247–255, 1995. https://doi.org/10.1006/jssc.1995.1270.
A. Boultif and D. Louer. Powder Pattern Indexing with the Dichotomy Method. Journal of Applied Crystallography, 37:724–731, 2004. https://doi.org/10.1107/S0021889804014876.
P. Grima-G., M. Salas, O. Contreras, Ch. Power, M. Quintero, H. Cabrera, I. Zumeta-D., A. Rodríguez, J.A. Aitken, and W. Brämer-E. Cu₃TaSe₄ and Cu₃NbSe₄ : X-Ray Diffraction, Differential Thermal Analysis, Optical Absorption, and Raman Scattering. Journal of Alloys and Compounds, 658:749–756, 2016. https://doi.org/10.1016/j.jallcom.2015.10.283.
P. Kubelka. New Contributions to the Optics of Intensely Light-Scattering Materials. Part I. Journal of the Optical Society of America, 38(5):448–457, 1948. https://doi.org/10.1364/JOSA.38.000448.
J. Tauc. Optical Properties and Electronic Structure of Amorphous Ge and Materials Research Bulletin, 3:37, 1968. https://doi.org/10.1016/0025-5408(68)90023-8.
P.F. Newhouse, P.A. Hersh, A. Zakutayev, A. Richard, H.A.S. Platt, D.A. Keszler, and J. Tate. Thin-Film Preparation and Characterization of Wide Bandgap Cu₃TaQ₄ (Q=S or Se) P-Type Semiconductors. Thin Solid Films, 517:2473–2476, 2009. https://doi.org/10.1016/j.tsf.2008.11.020.