Conglomerados magnéticos en el sistema de aleaciones (CuInSe₂)₁₋ₓ(TaSe)ₓ (0 < x ≤ 0, 5) Recibido: /agosto, 2021; Aceptado: /noviembre, 2021
Main Article Content
Abstract
Muestras policristalinas del sistema (CuInSe2)₁₋ₓ (TaSe)x fueron preparadas por la técnica de fusión y recocido en el rango de composiciones 0 < x ≤ 0, 5. Se encontró que la solubilidad del TaSe en la matriz ternaria del CuInSe2 es de aproximadamente 10%; sin embargo, hasta la composición x = 0, 5 tienen una fase principal de tipo tetragonal CuInSe2 con trazas de la fase TaIn0,67Se2. Un diagrama de fases T-x preliminar es presentado. Para determinar el comportamiento magnético inducido, las medidas de susceptibilidad magnética DC fueron estimadas en función de la temperatura, usando el protocolo de Enfriamiento Cero Campo-Enfriamiento con Campo (ECC-EC) en las muestras x = 0, 05 y 0, 5. Se encontró que el comportamiento magnético evoluciona de diamagnético (CuInSe2, x = 0) a paramagnético (x = 0, 05) y ferromagnético débil (x = 0, 5). La histéresis observada entre las curvas ECC y EC, para x = 0, 05 y x = 0, 5, sugiere la presencia de conglomerados magnéticos; el ajuste de las curvas con la función de Langevin muestra que los conglomerados están compuestos por aproximadamente 103 átomos de Ta.
Descargas
Article Details
References
J.L. Shay and J.H. Wernick. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications. Pergamon Press, Oxford, UK, 1974.
O. Madelung. Semiconductors Data Handbook. Springer, Berlin, 2004.
J.L. Shay and S. Wagner. Efficient CuInSe₂/CdS Solar Cells. Applied Physics Letters, 27(2):89–90, 1975.
L. Stolt and J. Hedström. ZnO/CdS/CuInSe₂ Thin-film Solar Cells with Improved Performance. Applied Physics Letters, 62(6):597–599, 1993.
D. Cahen. Defect Chemical Explanation for the Effect of Air Anneal on CdS/CuInSe₂ Solar Cell Performance. Applied Physics Letters, 54(6):558–560, 1989.
G.A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, and K. Sato. Room Temperature Ferromagnetism in Novel Diluted Magnetic Semiconductor Cd₁₋ₓMnₓGeP₂. Japanese Journal of Applied Physics, 39(Part 2, No. 10A):L949–L951, 2000.
S. Cho, S. Choi, G.-B. Cha, S.C. Hong, Y. Kim, Y.-J. Zhao, A.J. Freeman, J.B. Ketterson, B.J. Kim, Y.C. Kim, and B.-C. Choi. Room-Temperature Ferromagnetism in (Zn₁₋ₓMnx)GeP₂ Semiconductors. Physical Review Letters, 88(25):257203, 2002.
S. Choi, J. Choi, S.C. Hong, S. Cho, Y. Kim, and J.B Ketterson. Mn-doped ZnGeAs₂ and ZnSnAs₂ Single Crystals: Growth, Electrical, and Magnetic Properties. Journal of the Korean Physical Society, 42(SPEC. Event: Proceedings of The 11th Seoul International Symposium of the Physics Semiconductors and Apllications 2002 - Cheju Island, Korea):S739– S741, 2003.
R.V. Demin, L.I. Koroleva, S.F. Marenkin, S. Mikhailov, T. Aminov, H. Szymczak, R. Szymczak, and M. Baran. RoomTemperature Ferromagnetism in Mn-doped CdGeAs₂ Chalcopyrite. Journal of Magnetism and Magnetic Materials, 290–291(Part 2):1379–1382, 2005.
L.I. Koroleva, V.Yu. Pavlov, D.M. Zashchirinski˘I, S.F. Marenkin, S.A. Varnavskiĭ, R. Szymczak, V. Dobrovol’skiĭ, and L. Killinskiĭ. Magnetic and Electrical Properties of the ZnGeAs₂: Mn Chalcopyrite. Physics of the Solid State, 49:2121–2125, 2007.
L.I. Koroleva, D.M. Zashchirinski˘I, T.M. Khapaeva, S.F. Marenkin, I.V. Fedorchenko, R. Szymczak, B. Krzumanska, V. Dobrovol’skiĭ, and L. Killinskiĭ. Manganese-Doped ZnSiAs₂ Chalcopyrite: A New Advanced Material for Spintronics. Physics of the Solid State, 51(2):303–308, 2009.
L. Kilanski, M. Gorska, V. Domukhovski, W. Dobrowolski, J.R. Anderson, C.R. Rotundu, S.A. Varniavskii, and S.F. Marenkin. Zn(1−x) (Mn,Co)xGeAs2 Ferromagnetic Semiconductor: Magnetic
and Transport Properties. Acta Physica Polonica A, 114(5):1151–1157, 2008.
A.V. Kochura, R. Laiho, A. Lashkul, E. Lähderanta, M.S. Shakhov, I.S. Zakharov, S.F. Marenkin, A.V. Molchanov, S.G. Mikhailov, and G.S. Jurev. Synthesis and Magnetic Properties of Mn-doped Cd0.1Zn0.9GeAs₂ Solid Solutions. Journal of Physics: Condensed Matter, 20(33):(335220)1– 5, 2008.
L.-J. Lin, N. Tabatabaie, J.H. Wernick, G.W. Hull, and B. Meagher. Optical, Electronic and Magnetic Semiconductor Mn:CuInTe₂. Journal of Electronic Materials, 17:321–324, 1988.
P.M. Shand, P.A. Polstra, I. Miotkowski, and B.C. Crooker. Magnetic Behavior of (CuIn)₁₋ₓMn₂xTe₂. Journal of Applied Physics, 75(10):5731–5733, 1994.
N. Tsuji, H. Kitazawa, and G. Kido. Electric and Magnetic Propierties of Mn- and Fe-doped CuInS₂ Compounds. Physica Status Solidi (a), 189(3):951–954, 2002.
J. Yao, B.W. Rudyk, C.D. Brunetta, K.B. Knorr, H.A. Figore, A. Mar, and J.A. Aitken. Mn Incorporation in CuInS₂ Chalcopyrites: Structure, Magnetism and Optical Properties. Materials Chemistry and Physics, 136(2– 3):415–423, 2012.
J. Yao, C.D. Brunetta, and J.A. Aitken. Suppression of Antiferromagnetic Interactions Through Cu Vacancies in Mn-Substituted CuInSe₂ Chalcopyrites. Journal of Physics: Condensed Matter, 24(8):086006, 2012.
J. Yao, C.N. Kline, H. Gu, M. Yan, and J.A. Aitken. Effects of Mn Substitution on the Structure and Properties of Chalcopyrite-Type CuInS₂. Journal of Solid State Chemistry, 182(9):2579–2586, 2009.
R.V. Demin, L.I. Koroleva, S.F. Marenkin, V.M. Novotortsev, B.M. Trukhan, S.A. Varnavskii, T.G. Aminov, G.G. Shabunina, R. Szymczak, and M. Baran. Heterogeneous Magnetic State in Mn-doped CdGeP₂ and CuGaTe₂. In N. Perov, editor, Proceedings The third Moscow International Symposium on Magnetism, pages 24–27, Moscow, June 2005. Moscow State University, Elsevier.
S. Schorr, R. Hoehne, D. Spemann, Th. Doering, and B.V. Korzun. Magnetic Properties Investigations of Mn Substituted ABX₂ Chalcopyrites. Physica Status Solidi (A), 203(11):2783–2787, 2006.
V.M. Novotortsev, G.G. Shabuninab, L.I. Koroleva, T.G. Aminov, R.V. Demin, and S.V. Boichuk. Superparamagnetism in Mn-doped CuGaTe₂. Inorganic Materials, 43(1):12–17, 2007.
S. Torres-C., P. Grima-G., M. Muñoz, S. Durán, M. Quintero, L. Nieves, and R. Tovar. Magnetic Behavior of the Alloy (CuInSe₂)₁₋ₓ(FeSe)ₓ with x = 0.5. Acta Científica Venezolana, 66(1):56–59, 2015.
P. Grima-G., E. Calderón, M. Muñoz-P., S. Durán-P., M. Quintero, E. Quintero, M. Morocoima, G.E. Delgado, H. Romero, Briceño J.M., and J. Fernández. Synthesis and Characterization of Cu₃TaIn₃Se₇ and CuTa₂InTe₄. Physica Status Solidi (A), 205(7):1552–1559, 2008.
Y.-J. Zhao and A. Zunger. Electronic Structure and Ferromagnetism of Mn-Substituted CuAlS₂, CuGaS₂, CuInS₂, CuGaSe₂ and CuGaTe₂. Physical Review B, 69:104422, 2004.
Y.-J. Zhao and A. Zunger. Site Preference for Mn Substitution in Spintronic CuMᴵᴵᴵXᵛᴵ₂ Chalcopyrite Semiconductors. Physical Review B, 69:075208, 2004.
A.V. Kochura, S.V. Ivanenko, A. Lashkul, E.P. Kochura, S.F. Marenkin, I.V. Fedorchenko, A.P. Kuzmenko, and E. J. Lahderanta. Magnetic Properties of AᴵᴵBᴵᵛCᵛ₂ Compounds Doped with Mn. Nano and Electronic Physics, 5(4):04013(1)–04013(4), 2013.
L. Kilanski, W. Dobrowolski, R. Szymczak, E. Dynowska, M. Wójcik, N. Romcevic, I.V. Fedorchenko, and S.F. Marenkin. Chalcopyrite Semimagnetic Semiconductors: From Nanocomposite to Homogeneous Material. Science of Sintering, 46(3):271–281, 2014.
J.A. Aitken, G.M. Tsoi, L.E. Wenger, and S.L. Brock. Emergence of Pressure Induced Metamagnetic-Like State in Mndoped CdGeAs₂ Chalcopyrite. Chemistry of Materials, 83:1809, 2007.
T. Dietl, H. Ohno, and F. Matsukura. Hole Mediated Ferromagnetism in Tetrahedrally Coordinated Semiconductors. Physical Review B, 63:195205, 2001.
T. Katamani and H.J. Akai. Magnetic Properties of Chalcopyrite-Based Diluted Magnetic Superconductors. Journal of Superconductivity, 16:95–97, 2003.
T. Katamani and H.J. Akai. The Magnetic Properties in Transition Metal-Doped Chalcopyrite Semiconductors. Materials Science in Semiconductor Processing, 6(5–6):389–391, 2003.
P. Mahadevan and A. Zunger. RoomTemperature Ferromagnetism in Mn-Doped Semiconductind CdGeP₂. Physical Review Letters, 88:159904, 2002.
H. Akai. Ferromagnetism and its Stability in the Diluted Magnetic Semiconductor (In, Mn)As. Physical Review Letters, 81:3002, 1998.
D. Dietl. Origin of Ferromagnetic Response in Diluted Magnetic Semiconductors and Oxides. Journal of Physics: Condensed Matter, 19(33):(165204)1–15, 2007.
P. Grima-G., M. Muñoz-P., S. Durán-P., M. Quintero, G.E. Delgado, J.M. Briceño, H. Romero, J. Ruiz, and J. Fernández, Preparation and Investigation of (CuInSe₂)₁₋ₓ(TaSe)ₓ Solid Solutions (0 < x < 0.5). Revista Mexicana de Física, S 53:260–262, 2007.
P. Grima-G., M. Muñoz-P., S. Durán-P., G.E. Delgado, M. Quintero, and J. Ruiz. Preparation and Investigation of the Quaternary Alloy CuTaInSe₃. Materials Research Bulletin, 42:2067–2071, 2007.
G.E. Delgado, A.J. Mora, P. Grima-G., S. Durán, M. Muñoz, and M. Quintero. Crystal Structure of the Quaternary Alloy CuTaInSe₃. Crystal Research & Technology, 43(7):783–785, 2008.
P. Grima-G., E. Calderón, M. Muñoz-P., S. Durán-P., M. Quintero, E. Quintero, M. Morocoima, G.E. Delgado, H. Romero, J.M. Briceño, and J. Fernández. Synthesis and Characterization of Cu₃TaIn₃Se₇ and CuTa₂InTe₂. Physica Status Solidi (A), 205(7):1552–1559, 2008.
C.S. Sunandana, K Chandrasekaran, G. Aravamudan, and G.V. Subba-R. Electrical Properties of InxMCh₂ (M ≡ Nb, Ta; Ch ≡ S, Se). Journal of Less-Common Metals, 84:115– 118, 1982.
P. Pyykkö and M. Atsumi. Molecular Single Bond Covalent Radii for Elements 1–118. Chemistry – A European Journal, 15(1):187– 197, 2009.
G.E. Delgado, A.J. Mora, P. Grima-G., and M. Quintero. Crystal Structure of CuFe₂InSe₄ from X-ray Powder Diffraction. Journal of Alloys Compounds, 454:306–409, 2008.
P. Grima-G., S. Torres, M. Quintero, L. Nieves, E. Moreno, and G.E. Delgado. Phase Diagram of CuFe₂InSe₄ Alloys. Journal of Alloys Compounds, 630:146–150, 2015.