Vigilancia ambiental de SARS-CoV-2 en Caracas mediante epidemiología de aguas residuales

Main Article Content

Abstract

En marzo del 2020 la OMS declaró la pandemia por COVID-19, enfermedad causada por el coronavirus SARS-CoV-2. En diversos países se ha implementado la epidemiología de aguas residuales para la vigilancia ambiental del virus en las comunidades. El ARN del SARS-CoV-2 se excreta a través de las heces, saliva y el esputo, fluidos que son eliminados a través de sistemas de aguas residuales, y su detección y cuantificación se relaciona con los casos activos de la COVID-19. En tal sentido, el objetivo fue detectar la presencia de este virus en aguas residuales en diferentes parroquias de Caracas y determinar patrones de prevalencia. Se realizó la concentración del ARN viral, extracción y posterior RT-qPCR dirigida a los genes N1 y ORF1ab. Del total de muestras recolectadas, el 88,5 % fueron positivas. Aquellas parroquias con mayor densidad poblacional también mostraron mayores concentraciones de SARS-CoV-2 en aguas residuales. Asimismo, se encontró correlación entre los casos de COVID-19 reportados con la concentración viral en el agua. La aplicación de la epidemiología de aguas residuales, como una herramienta nueva en Venezuela aplicada a la vigilancia de SARS-CoV-2 en la Región Capital mostró ser de mucha utilidad como complemento de la vigilancia epidemiológica del virus.

Descargas

Download data is not yet available.

Article Details

Section
Ciencia y Tecnología
How to Cite
Vigilancia ambiental de SARS-CoV-2 en Caracas mediante epidemiología de aguas residuales. (2024). Ciencia En Revolución, 9(25), 8-33. https://cienciaenrevolucion-cal.mincyt.gob.ve/index.php/cienciaenrevolucion/article/view/90

References

Sun P, Lu X, Xu C, Sun W, Pan B. Understanding of COVID‐19 based on current evidence.

J Med Virol. 2020;92(6):548–51. http://dx.doi.org/10.1002/jmv.25722

Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev.

Microbiol. 2021;19(3):141–54. http://dx.doi.org/10.1038/s41579-020-00459-7

Communicable Diseases. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. Who.int. World Health Organization; 2020. https://www.who.int/publications/i/item/10665-331501

Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319–25. http://dx.doi.org/10.1016/s0140-6736(03)13077-2

Zaki AM, an Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel Coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012;367(19):1814–20. http://dx.doi.org/10.1056/nejmoa1211721

D’Amico F, Baumgart DC, Danese S, Peyrin-Biroulet L. Diarrhea during COVID-19 infection: Pathogenesis, epidemiology, prevention, and management. Clin. Gastroenterol Hepatol. 2020;18(8):1663–72. http://dx.doi.org/10.1016/j.cgh.2020.04.001

Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, et al. SARS- CoV-2 productively infects human gut enterocytes. Science. 2020;369(6499):50–4. http://dx.doi.org/10.1126/science.abc1669

Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831-1833.e3. http://dx.doi.org/10.1053/j.gastro.2020.02.055

Lin L, Jiang X, Zhang Z, Huang S, Zhang Z, Fang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 2020;69(6):997–1001. http://dx.doi.org/10.1136/gutjnl-2020-321013

Kim J-M, Kim HM, Lee EJ, Jo HJ, Yoon Y, Lee N-J, et al. Detection and isolation of SARS- CoV-2 in serum, urine, and stool specimens of COVID-19 patients from the republic of Korea. Osong Public Health Res Perspect. 2020;11(3):112–7. http://dx.doi.org/10.24171/j.phrp.2020.11.3.02

Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel Coronavirus in the United States. N. Engl. J. Med. 2020;382(10):929–36. http://dx.doi.org/10.1056/nejmoa2001191

Mallapaty S. How sewage could reveal true scale of coronavirus outbreak. Nature. 2020;580(7802):176–7. http://dx.doi.org/10.1038/d41586-020-00973-x

Hata A, Hara-Yamamura H, Meuchi Y, Imai S, Honda R. Detection of SARS-CoV-2 in wastewater in Japan during a COVID-19 outbreak. Sci. Total Environ. 2021;758(143578):143578. http://dx.doi.org/10.1016/j.scitotenv.2020.143578

Rothman JA, Loveless TB, Kapcia J III, Adams ED, Steele JA, Zimmer-Faust AG, et al. RNA viromics of southern California wastewater and detection of SARS-CoV-2 single- nucleotide variants. Appl. Environ. Microbiol. 2021;87(23). http://dx.doi.org/10.1128/aem.01448-21

Berchenko Y, Manor Y, Freedman LS, Kaliner E, Grotto I, Mendelson E, et al. Estimation of polio infection prevalence from environmental surveillance data. Sci. Transl. Med. 2017;9(383). http://dx.doi.org/10.1126/scitranslmed.aaf6786

Barril PA, Fumian TM, Prez VE, Gil PI, Martínez LC, Giordano MO, et al. Rotavirus seasonality in urban sewage from Argentina: Effect of meteorological variables on the viral load and the genetic diversity. Environ. Res. 2015;138:409–15. http://dx.doi.org/10.1016/j.envres.2015.03.004

Daughton CG. Illicit drugs in municipal sewage: Proposed new nonintrusive tool to heighten public awareness of societal use of illicit-abused drugs and their potential for ecological consequences. ACS Symposium Series. Washington, DC: American Chemical Society; 2001. p. 348–64.

Blomqvist S, El Bassioni L, El Maamoon Nasr EM, Paananen A, Kaijalainen S, Asghar H, et al. Detection of imported wild polioviruses and of vaccine-derived polioviruses by environmental surveillance in Egypt. Appl. Environ. Microbiol. 2012;78(15):5406–9. http://dx.doi.org/10.1128/aem.00491-12

Brouwer AF, Eisenberg JNS, Pomeroy CD, Shulman LM, Hindiyeh M, Manor Y, et al. Epidemiology of the silent polio outbreak in Rahat, Israel, based on modeling of environmental surveillance data. Proc. Natl. Acad. Sci. U S A. 2018;115(45). http://dx.doi.org/10.1073/pnas.1808798115

Apostol LNG, Imagawa T, Suzuki A, Masago Y, Lupisan S, Olveda R, et al. Genetic diversity and molecular characterization of enteroviruses from sewage-polluted urban and rural rivers in the Philippines. Virus Genes. 2012;45(2):207–17. http://dx.doi.org/10.1007/s11262-012-0776-z

Tao Z, Wang H, Li Y, Xu A, Zhang Y, Song L, et al. Cocirculation of two transmission lineages of Echovirus 6 in Jinan, China, as revealed by environmental surveillance and

sequence analysis. Appl. Environ. Microbiol. 2011;77(11):3786–92. http://dx.doi.org/10.1128/aem.03044-10

Amdiouni H, Faouzi A, Fariat N, Hassar M, Soukri A, Nourlil J. Detection and molecular identification of human adenoviruses and enteroviruses in wastewater from Morocco: Molecular identification of HAdV and EV. Lett. Appl. Microbiol. 2012;54(4):359–66. http://dx.doi.org/10.1111/j.1472-765x.2012.03220.x

Bofill-Mas S, Pina S, Girones R. Documenting the epidemiologic patterns of polyomaviruses in human populations by studying their presence in urban sewage. Appl. Environ. Microbiol. 2000;66(1):238–45. http://dx.doi.org/10.1128/aem.66.1.238- 245.2000

Clemente-Casares P, Pina S, Buti M, Jardi R, Martín M, Bofill-Mas S, et al. Hepatitis E virus epidemiology in industrialized countries. Emerg. Infect. Dis. 2003;9(4):448–54. http://dx.doi.org/10.3201/eid0904.020351

La Rosa G, Bonadonna L, Lucentini L, Kenmoe S, Suffredini E. Coronavirus in water environments: Occurrence, persistence and concentration methods - A scoping review.

Water Res. 2020;179(115899):115899. http://dx.doi.org/10.1016/j.watres.2020.115899

Sala-Comorera L, Reynolds LJ, Martin NA, O’Sullivan JJ, Meijer WG, Fletcher NF. Decay of infectious SARS-CoV-2 and surrogates in aquatic environments. Water Res. 2021;201(117090):117090. http://dx.doi.org/10.1016/j.watres.2021.117090

Sims N, Kasprzyk-Hordern B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020;139(105689):105689. http://dx.doi.org/10.1016/j.envint.2020.105689

Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9. http://dx.doi.org/10.1038/s41586-020-2008-3

Trujillo M, Cheung K, Gao A, Hoxie I, Kannoly S, Kubota N, et al. Protocol for safe, affordable, and reproducible isolation and quantitation of SARS-CoV-2 RNA from wastewater. PLoS One. 2021;16(9):e0257454. http://dx.doi.org/10.1371/journal.pone.0257454

Medema G, Been F, Heijnen L, Petterson S. Implementation of environmental surveillance for SARS-CoV-2 virus to support public health decisions: Opportunities and challenges. Curr. Opin. Environ. Sci. Health. 2020;17:49–71. http://dx.doi.org/10.1016/j.coesh.2020.09.006

Wu F, Zhang J, Xiao A, Gu X, Lee WL, Armas F, et al. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. mSystems. 2020;5(4). http://dx.doi.org/10.1128/msystems.00614-20

Flood MT, D’Souza N, Rose JB, Aw TG. Methods evaluation for rapid concentration and quantification of SARS-CoV-2 in raw wastewater using droplet digital and quantitative RT-PCR. Food Environ. Virol. 2021;13(3):303–15. http://dx.doi.org/10.1007/s12560-021- 09488-8

Hamouda M, Mustafa F, Maraqa M, Rizvi T, Aly Hassan A. Wastewater surveillance for SARS-CoV-2: Lessons learnt from recent studies to define future applications. Sci. Total Environ. 2021;759(143493):143493. http://dx.doi.org/10.1016/j.scitotenv.2020.143493

Mao K, Zhang K, Du W, Ali W, Feng X, Zhang H. The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Curr. Opin. Environ. Sci. Health. 2020;17:1–7. http://dx.doi.org/10.1016/j.coesh.2020.04.006

XIV Censo Nacional de Población y Vivienda. Resultados de Entidad Federal y Municipio del Estado Miranda. http://www.ine.gob.ve/. http://www.ine.gob.ve/documentos/Demografia/CensodePoblacionyVivienda/pdf/ miranda.pdf

Chavarria-Miró G, Anfruns-Estrada E, Guix S, Paraira M, Galofré B, Sánchez G, et al. Sentinel surveillance of SARS-CoV-2 in wastewater anticipates the occurrence of COVID-19 cases. bioRxiv. 2020. http://dx.doi.org/10.1101/2020.06.13.20129627

Venezuela recibe primer envío de vacunas contra la COVID-19 a través del Mecanismo COVAX. Paho.org. 2021. https://www.paho.org/es/noticias/7-9-2021-venezuela- recibe-primer-envio-vacunas-contra-covid-19-traves-mecanismo-covax

Li X, Zhang S, Shi J, Luby SP, Jiang G. Uncertainties in estimating SARS-CoV-2 prevalence by wastewater-based epidemiology. Chem. Eng. J. 2021;415(129039):129039. http://dx.doi.org/10.1016/j.cej.2021.129039

Maida CM, Amodio E, Mazzucco W, La Rosa G, Lucentini L, Suffredini E, et al. Wastewater-based epidemiology for early warning of SARS-COV-2 circulation: A pilot study conducted in Sicily, Italy. Int. J. Hyg. Environ. Health. 2022;242(113948):113948. http://dx.doi.org/10.1016/j.ijheh.2022.113948

Wurtzer S, Marechal V, Mouchel JM, Maday Y, Teyssou R, Richard E, et al. Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. bioRxiv. 2020. http://dx.doi.org/10.1101/2020.04.12.20062679

Kitajima M, Ahmed W, Bibby K, Carducci A, Gerba CP, Hamilton KA, et al. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total Environ. 2020;739(139076):139076. http://dx.doi.org/10.1016/j.scitotenv.2020.139076

Carducci A, Federigi I, Liu D, Thompson JR, Verani M. Making Waves: Coronavirus detection, presence and persistence in the water environment: State of the art and knowledge needs for public health. Water Res. 2020;179(115907):115907. http://dx.doi.org/10.1016/j.watres.2020.115907