Materiales geopoliméricos como sustituto ecológico para los concretos tradicionales Recibido: /abril, 2020. Aceptado: /julio, 2020.
Main Article Content
Abstract
En los últimos años se han desarrollado muchas investigaciones en torno a nuevos materiales de construcción que permitan buscar alternativas ecológicas al uso de cemento, implicando una menor huella de carbono. Una de las opciones más atractivas lo representan los geopolímeros, polímeros inorgánicos, constituidos por redes tridimensionales de enlaces del tipo siloxo, Si-O-SI (silicio-oxígeno) y enlaces sialato, Si-O-Si-O-Si-O-Al (silicio-oxígeno-aluminio), los cuales se pueden obtener mediante la activación alcalina de materiales ricos en óxidos de aluminio y silicio, tales como caolín, el metacaolín, e incluso residuos industriales como las cenizas volantes y las cenizas de cascarilla de arroz entre otros, produciendo concretos libres de cemento, con características de resistencia superiores a la de concretos tradicionales, pero que presentan un menor impacto ambiental permitiendo a su vez la revalorización y disminución de pasivos ambientales. Este trabajo presenta una amplia revisión de la tecnología de los geopolímeros y sus aplicaciones con el objetivo de abrir las perspectivas para la investigación de estos materiales en el país. Palabras clave: geopolímeros; activación alcalina; concretos geopoliméricos.
Descargas
Article Details
References
J. Davidovits. Global Warming Impact on the Cement and Aggregate Industries. World Resource Review, 6(2):263–278, 1994.
D. Hardjito, S. E Wallah, D.M.J. Sumajouw, and B. V. Bangan. On the Development of Fly Ash Based Geopolymer Concrete. American Concrete Institute, 101(6):467–472, 2004.
N. Kabashi, C. Krasniqi, A. Sadikaj, S. Bublaku, A. Muriqi, and H. Morina. Corrosion in Concrete Under Sulphate and Chloride Attacks. In I. Banjad P., A. Baricevic, N. Stirmer, and D. Bjegovic, Editors, 1st International Conference on Construction Materials for Sustainable Future, Zadar, Croatia, abril 2017.
A. Neville. Chloride Attack of Reinforced Concrete: An Overview. Materials and Structures, 8:63–70, 1995.
J. Davidovits. Properties of Geopolymer Cement. In Proceeding 1 international Conference on Alkali Cements and Concretes, Kiev, Ucrania, p. 131–149, 1994.
J. Davidovits. Geopolymers: Inorganic Polymeric New Materials. Journal of Thermal Analysis, 37:1633–1656, 1991.
V. Barbosa, K. Mackenzie, and C. Thaumaturgo. Synthesis and Characterization of Materials Based on Inorganic Polymers of Alumina and Silica: Sodium Polysialate Polymers. International Journal of Inorganic Materials, 2(4):309– 317, 2000.
H. Kuehl. Slag Cement and Process of Making the Same. United States Patent and Trademark Office (USPTO), United States; US900939, 1908.
A. O. Purdon. The Action of Alkalis on Blastfurnace Slag. Journal of the Society of Chemical Industry, 59(9):191–202, 1940.
V. D. Glukhovsky. Soil Silicates (In Russian). Gosstroyizdat Ukrainy Publishing, 1959.
J. Davidovits. Geopolymer Chemistry and Applications. Second (2nd) Edit. Institut Géopolymère, Saint-Quentin, France, january 2008.
J.L. Provis and J.S.J. van Deventer. RILEM State-of-the-Art Reports, Alkali Activated Materials. Springer, 2014.
E. Gartner. Industrially Interesting Approaches to “Low-CO₂” Cements. Cement and Concrete Research, 34(9):1489–1498, 2004.
J.S.Damtoft, J.Lukasik, D.Herfort, D.Sorrentino, and E.M.Gartner. Sustainable Development and Climate Change Initiatives. Cement and Concrete Research, 38(2):115–127, 2008.
P. Duxson, J.L. Provis, G.C. Lukey, and J.S.J van Deventer. The Role of Inorganic Polymer Technology in the Development of “Green Concrete”. Cement and Concrete Research, 37(12):1590–1597, 2007.
H. Zain, M. Mustafa, A.B. Abdullah, K. Hussin, N. Ariffin, and R. Bayuaji. Review on Various Types of Geopolymer Materials with the Environmental Impact Assessment. MATEC Web of Conferences, 97(01021):1590– 1597, 2017.
G. Habert, J.B. Espinose de Lacaillerie, and N. Roussel. An Environmental Evaluation of Geopolymer Based Concrete Production: Reviewing Current Research Trends. Journal of Cleaner Production, 19:1229–1238, 2011.
A. Mehta and R. Siddique. An Overview of Geopolymers Derived from Industrial By-Products. Construction and Building Materials, 127(30):183–198, 2016.
S. O. Sore, A. Messan, E. Prud’homme, G. Escadeillas, and F. Tsobnang. Synthesis and Characterization of Geopolymer Binders Based on Local Materials from Burkina Faso–Metakaolin and Rice Husk Ash. Construction and Building Materials, 124:301–311, 2016.
E. Nimwinya, W. Arjharn, S. Horpibulsuk, and T. Phoo-ngernkham. A Sustainable Calcined Water Treatment Sludge and Rice Husk Ash Geopolymer. Journal of Cleaner Production, 119, 2016.
E. D. Rodríguez, S. A. Bernal, J. L. Provis, J. D. Gehman, J. M. Monzó, J. Payá, and M. V. Borrachero. Geopolymers Based on Spent Catalyst Residue from a Fluid Catalytic Cracking (FCC) Process. Fuel Volume, 109:493–502, 2013.
A. M.Rashad. Potential Use of Phosphogypsum in Alkali-Activated Fly Ash Under the Effects of Elevated Temperatures and Thermal Shock Cycles. Journal of Cleaner Production, 87(15):717–725, 2015.
A. B. Santa, C. Soares, and H. G. Riella. Geopolymers with a High Percentage of Bottom Ash for Solidification/ Immobilization of Different Toxic Metals. Journal of Hazardous Materials, 15(318):145–153, 2016.
Q. Li, Z. Sun, D. Tao, Y. Xu, P. Li, H. Cui, and J. Zhai. Immobilization of Simulated Radionuclide 133Cs+ by Fly Ash-Based Geopolymer. Journal of Hazardous Materials, 262(15):325– 331, 2013.
J. Temuujin, A. Minjigmaa, B. Davaabal, U. Bayarzul, A. Ankhtuya, Ts. Jadambaa, and K.J.D. MacKenzie. Utilization of Radioactive High-Calcium Mongolian Flyash for the Preparation of Alkali-Activated Geopolymers for Safe Use As Construction Materials. Ceramics International, 40(10B):16475–16483, 2014.
P. Sazama, O. Bortnovsky, J. Dedecek, Z. Tvaruzková, and Z. Sobalík. Geopolymer Based Catalysts—New Group of Catalytic Materials. Catalysis Today, 164(1):92–99, 2011.
S. Sharma, D. Medpelli, S. Chenb, and D. K. Seo. Calcium-modified Hierarchically Porous Aluminosilicate Geopolymer as a Highly Efficient Regenerable Catalyst for Biodiesel Production. The Royal Society of Chemistry, 5(80):65454– 65461, 2015.
S. Candamano, P. Frontera, A. Macario, F. Crea, J. B. Nagy, and P. L. Antonucci. Preparation and Characterization of Active Ni-Supported Catalyst for Syngas Production. Chemical Engineering Research and Design, 96:78–86, 2015.
E. Jamstorp, J. Forsgren, S. Bredenberg, H. Engqvist, and M. Stromme. Mechanically Strong Geopolymers Offer New Possibilities in Treatment of Chronic Pain. Journal of Controlled Release, 143(3):370–377, 2010.
E. Jamstorp, M. Stromme, and G. Frenning. Modeling Structure–Function Relationships for Diffusive Drug Transport in Inert Porous Geopolymer Matrices. Journal of Pharmaceutical Sciences, 100(10):4338–4348, 2011.
E. Jamstorp, M. Stromme, and S. Bredenberg. Influence of Drug Distribution and Solubility on Release from Geopolymer Pellets—A Finite Element Method Study. Journal of Pharmaceutical Sciences, 101(5):1803–1810, 2012.
J. Forsgren, C. Pedersen, M. Strømme, and H. Engqvist. Synthetic Geopolymers for Controlled Delivery of Oxycodone: Adjustable and Nanostructured Porosity Enables Tunable and Sustained Drug Release. PLOS ONE, 6(3):7510– 7415, 2011.
B. Cai, H. Engqvist, and S. Bredenberg. Evaluation of the Resistance of a Geopolymerbased Drug Delivery System to Tampering. International Journal of Pharmaceutics, 465(1– 2):169–174, 2014.
Y. Zhang and L. Liu. Fly ash-based Geopolymer As A Novel Photocatalyst for Degradation of Dye from Wastewater. Particuology, 11(3):353–358, 2013.
R. M. Novais, L. H. Buruberri, M.P. Seabra, and J. A. Labrincha. Novel Porous Fly-Ash Containing Geopolymer Monoliths for Lead Adsorption from Wastewaters. Journal of Hazardous Materials, 318(12):631–640, 2016.
Y. Ge, Y. Yuan, K. Wang, Y. He, and X. Cui. Preparation of Geopolymer-Based Inorganic Membrane for Removing Ni2+ from Wastewater. Journal of Hazardous Materials, 299:711–718, 2015.
T. Luukkonen, K. Veznikova, E.T. Tolonen, H. Runtti, J. Yliniemi, T. Hu, K. Kemppainen, and U. Lassi. Removal of Ammonium from Municipal Wastewater with Powdered and Granulated Metakaolin Geopolymer. Environmental Technology, 39(4):414–423, 2018.