Indicadores para la evaluación fitoextractora de cadmio de plantas asociadas a bosque húmedo tropical

Contenido principal del artículo

Resumen

El propósito del estado del arte es identificar los indicadores frecuentemente empleados para evaluar el potencial fitoextractor de una especie vegetal, así como reconocer las metodologías e instrumentos comúnmente usados para estimarlos; además, es suministrada una lista de plantas registradas dentro de la República Bolivariana de Venezuela que podrían poseer potencial para la remediación de suelos contaminados de cadmio. Los indicadores que suelen usarse para ponderar el potencial fitoextractor de una planta son los factores de transferencia, de bioacumulación y de bioconcentración; se resalta la practicidad del “número de cosechas necesarias” y del “índice de tolerencia”. Tres ensayos experimentales deben emprenderse antes de afirmar que una planta puede usarse para fitoextracción, es decir, pruebas en “solución nutritiva contaminada”, en “suelo artificialmente contaminado” y en “suelo naturalmente contaminado”. Para el diagnóstico de cadmio en suelos y tejidos vegetales, los equipos corrientemente utilizados son la espectrometría de emisión atómica con plasma acoplado inductivamente y la de absorción atómica. Finalmente, las plantas que podrían tener potencial para fines de fitoextracción de cadmio edáfico fueron identificadas.

Descargas

##plugins.themes.bootstrap3.displayStats.noStats##

Detalles del artículo

Sección
Ciencia y Tecnología
Cómo citar
Indicadores para la evaluación fitoextractora de cadmio de plantas asociadas a bosque húmedo tropical. (2020). Ciencia En Revolución, 6(18), 50-66. https://cienciaenrevolucion-cal.mincyt.gob.ve/index.php/cienciaenrevolucion/article/view/25

Referencias

J. Suman, O. Uhlik, J. Viktorova, and T. Macek. Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? Frontiers in Plant Science, 9, 2018.

B. Pernía. Respuestas a la exposición al cadmio y su tasa de acumulación en plantas de Amaranthus Lividus, Phaseolus vulgaris y Wedelia trilobata. Tesis Doctoral, Universidad Simón Bolívar, Baruta, Edo. Miranda, Venezuela, 2013.

S. Ashraf, Q. Ali, Z. A. Zahir, S. Ashraf, and H. N. Asghar. Phytoremediation: Environmentally Sustainable Way for Reclamation of Heavy Metal Polluted Soils. Ecotoxicology and Environmental Safety, 174 (February):714–727, 2019.

Environmental Protection Authority Tasmania. Classification and Management of Contaminated Soil for Disposal, 2018.

T. Crommentuijn, D. Sijm, J. de Bruijn, M. Van der Hoop, K. Van Leeuwen, and E. Van de Plassche. Maximum Permissible Negligible Concentrations for Metals and Metalloids in the Netherlands, Taking Into Account Background Concentration. Journal of Environmental Management, 60:121–143, 2000.

T. Sterckeman, L. Gossiaux, S. Guimont, and C. Sirguey. How Could Phytoextraction Reduce Cd Content in Soils Under Annual Crops? Simulations in the French Context. Science of the Total Environment, 654:751–762, 2019.

S. Cheng, M. Wang, S. Li, Z. Zhao, and W. E. Overview on Current Criteria for Heavy Metals and Its Hint for the Revision of Soil Environmental Quality Standars in China. Journal of Integrative Agriculture, 17(4):765– 774, 2018.

Q. Mahmood, M. Asif, S. Shaheen, M. T. Hayat, and S. Ali. Cadmium Contamination in Water and Soil. Elsevier Inc., 2019.

S. Cestari, S. Villanueva, N. Tellería, and M. Henríquez. Evaluation of Cadmium Phytoextraction Potential of Plants - Research Articles and Investigation Leaders (Researchers, Institutes and Countries), august 2020. [Data set] DOI: https://doi.org/10.5281/zenodo.4016897.

R. Core Team. R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing, Viena, Austria, 2020.

H. Ali, E. Khan, and M. A. Sajad. Phytoremediation of Heavy Metals-Concepts and Applications. Chemosphere, 91(7):869–881, 2013.

A. Van der Ent, A.J.M. Baker, R. D. Reeves, A. J. Pollard, and H. Schat. Hyperaccumulators of Metal and Metalloid Trace Elements: Facts and Fiction. Plant and Soil, 362(1-2):319–334, 2013.

R. N. Malik, S. Z. Husain, and I. Nazir. Heavy Metal Contamination and Accumulation in Soil and Wild Plant Species From Industrial Area of Islamabad, Pakistán. Pakistán Journal of Botany, 42(1):291–301, 2010.

E. Ruiz y M. Armienta. Acumulación de arsénico y metales pesados en maíz en suelos cercanos a jales o residuos mineros. Revista Internacional de Contaminación Ambiental, 28(2), 2012.

V. Subhashini, A. Swamy, and K. Hema. Phytoremediation: Emerging and Green Technology for the Uptake of Cadmium from the Contaminated Soil by Plant Species. International Journal of Environmental Sciences, 4(6):193–204, 2013.

J. Yoon, X. Cao, Q. Zhou, and L. Q. Ma. Accumulation of Pb, Cu, and Zn in Native Plants Growing on a Contaminated Florida Site. Science of the Total Environment, 368(2-3):456–464, 2006.

S. Wei, Q. Zhou, X. Wang, K. Zhang, G. Guo, and L. Q. Ma. A Newly-Discovered Cd Hyperaccumulator Solanum nigrum (L.). Chinese Science Bulletin, 50(1):33–38, 2005.

E. Olivares y E. Peña. Bioconcentración de elementos minerales en Amaranthus dubius (bledo, pira), creciendo silvestre en cultivos del estado Miranda, Venezuela, y utilizado en alimentación. Interciencia, 34(9), 2009.

G. P. Singh, H. P. Singh, D. R. Batish, and R. K. Kohli. Tolerance and Hyperaccumuation of Cadmium by a Wild, Unpalatable Herb Coronopus didymus (L.) Sm. (Brassica ceae). Ecotoxicology and Environmental Safety, 135(September 2016):209–215, 2016.

J. A. González, M. A. Rozas, I. Alkorta, and C. Garbisu. Dendroremediation of Heavy Metal Polluted Soils. Reviews on Environmental Health, 23(3):223–234, 2008.

S. Liu, S. Ali, R. Yang, J. Tao, and B. Ren. A Newly Discovered Cd-Hyperaccumulator Lantana Camara L. Journal of Hazardous Materials, 371:233–242, 2019.

R. W. Simmons, R. L. Chaney, J. S. Angle, M. Kruatrachue, S. Klinphoklap, R. D. Reeves, and P. Bellamy. Towards Practical Cadmium Phytoextraction with Noccaea caerulescens. International Journal of Phytoremediation, 17(2):191–199, 2014.

D. M. Deng, J. C. Deng, J. T. Li, J. Zhang, M. Hu, Z. Lin, and B. Liao. Accumulation of Zinc, Cadmium, and Lead in Four Populations of Sedum alfredii Growing on Lead/Zinc Mine Spoils. Journal of Integrative Plant Biology, 50(6):691–698, 2008.

M. Sánchez, R. Darío, H. Martínez, C. Eugenia, and R. Barahona. Biomass Production and Heavy Metal Absorption by Four Plants Grown at the Moravia Dump, Medellín, Colombia. Acta Biológica Colombiana, 15(2):271–288, 2010.

C. Demarco, T. Afonso, S. Pieniz, M. Quadro, F. Camargo, and R. Andreazza. In Situ Phytoremediation Characterization of Heavy Metals Promoted by Hydrocotyle Ranunculoides at Santa Bárbara Stream, an Anthropogenic at Santa Bárbara Stream, an Anthropogenic Polluted Site in Southern of Brazil. Environmenal Science and Pollution Research, 25:28312–28321, 2018.

C. Demarco, T. Afonso, S. Pieniz, M. Quadro, F. de Oliveira, and R. Andreazza. Phytoremediation of Heavy Metals and Nutrients by the Sagittaria montevidensis Into an Anthropogenic Contaminated Site at Southern of Brazil. International Journal of Phytoremediation, 21(11), 2019.

B. Pernía, M. Calabokis, K. Noris, and J. Bubis. Effects of Cadmium in Plants of Sphagneticola trilobata (L.) Pruski. Bioagro, 31(2):133–142, 2019.

E. Jara, J. Goméz, H. Montoya, M. Chan co, M. Mariano, y N. Cano. Capacidad fitorremediadora de cinco especies altoandinas de suelos contaminados con metales pesados. Revista Peruana de Biología, 21(2):145–154, 2014.

X. Long, N. Ni, L. Wang, X. Wang, J. Wang, Z. Zhang, R. Zed, Z. Liu, and H. Shao. Phytoremediation of Cadmium-Contaminated Soil by Two Jerusalem artichoke (Helianthus tuberosus L.) Genotypes. Clean - Soil, Air, Water, 41(2):202–209, 2013.

A. Kubier, R. Wilkin, and T. Pichler. Cadmium in Soils and Groundwater: A Review. Applied Geochemistry, 108, february 2019.

M. B. Kirkham. Cadmium in Plants on Polluted Soils: Effects of Soil Factors, Hyperaccumulation, and Amendments. Geoderma, 137(1-2):19–32, 2006.

M. K. Amjab, S. Khan, A. Khan, and M. Alam. Soil Contamination with Cadmium, Consequences and Remediation Using Organic Amendments. Science of the Total Environment, 601-602:1591–1605, 2017.

A. González. Contenido de metales pesados en suelos de una hacienda de la región de Barlovento, evaluación del posible efecto antrópico de la inundación del Río Tuy. Trabajo de Grado de Maestría, Universidad Central de Venezuela, 2018.

R. Henríquez. Caracterización geoquímica de metales pesados en los sedimentos de fondo de la cuenca del Río Tuy, Venezuela. Trabajo de Grado de Maestría, Universidad Central de Venezuela, 2011.

X. E. Yang, X. X. Long, H. B. Ye, Z. L. He, D. V. Calvert, and P. J. Stoffella. Cadmium Tolerance and Hyperaccumulation in a New Zn-Hyperaccumulating Plant Species (Sedum alfredii Hance). Plant and Soil, 259(1-2):181–189, 2004.

A. Gil, S. López, and A. López. Acclimation in Vitro Seddlings of Saintpaulia ionantha H. Wendl. (Gesneriaceae) “African Violet”to Green-House Conditions. Arnaldoa, 24(1):343–350, 2017.

W. Hopkins and N. Hüner. Introduction to Plant Physiology. Willey, Third (3rd) ed, 2003.

K. C. Fan, H. C. Hsi, C. W. Chen, H. L. Lee, and Z. Y. Hseu. Cadmium Accumulation and Tolerance of Mahogany (Swietenia macrophylla) Seedlings for Phytoextraction Applications. Journal of Environmental Management, 92(10):2818–2822, 2011.

X. Zhang, S. Zhang, X. Xu, T. Li, G. Gong, Y. Jia, Y. Li, and L. Deng. Tolerance and Accumulation Characteristics of Cadmium in Amaranthus hybridus L. Journal of Hazardous Materials, 180(1-3):303–308, 2010.

E. Papazoglou. Ecotoxicology and Environmental Safety Responses of Cynara cardunculus L. to Single and Combined Cadmium and Nickel Treatment Conditions. Ecotoxicology and Environmental Safety, 74(2):195–202, 2011.

S. Zhang, H. Lin, L. Deng, G. Gong, Y. Jia, X. Xu, T. Li, Y. Li, and H. Chen. Cadmium Tolerance and Accumulation Characteristics Siegesbeckia orientalis L. Ecological Engineering, 51:133–139, 2013.

Y. Sun, Q. Zhou, L. Wang, and W. Liu. Cadmium Tolerance and Accumulation Characteristics of Bidens pilosa L. as a Potential Cd-Hyperaccumulator. Journal of Hazardous Materials, 161(2-3):808–814, 2009.

X. Zhang, B. Gao, and H. Xia. Effectcadmium on Growth, Photosynthesis, Mineral Nutrition and Metal Accumulation of Banagrass and Vetiver grass. Ecotoxicology and Environmental Safety, 106:102–108, 2014.

J. Marković, M. Jović, I. Smičiklas, M. ŠljivićIvanović, A. Onjia, K. Trivunac, and A. Pović. Cadmium Retention and Distribution in Contaminated Soil: Effects and Interactions of Soil Properties, Contamination Level, Aging Time and Insitu Immobilization Agents. Ecotoxicology and Environmental Safety, 174(February):305–314, 2019.

M. Arvelo, D. González, S. Maroto, T. Delgado, y P. Montoya. Manual del cultivo cacao, buenas prácticas para América Latina. Instituto Interamericano de Cooperación para la Agricultura, 2017.

E. García, E. García, L. Juárez, L. Juárez, J. Montiel, and M. Gómez. Response of Broad Bean (Vicia faba l.) Grown in Soil Polluted With Different Cadmium Concentrations. Revista Internacional de Contaminación Ambiental, 28(2), 2012.

L. Almeida, D. Meireles, A. de Paula, K. Dázio, L. Guimarães, and J. Donizeti. Synergy Between Cadmium and Zinc in Bean Plants Cultivated in Multi Contaminated Soils. Acta Scientiarum, Agronomy, 41, 2018.

W. Delince, R. Valdéz, O. López, F. Gurudi, and M. Balbín. Heavy Metals Agroenvironmental Risk in Soils with Cultivated Oryza sativa l. and Solanum tuberosum l. Revista Científica Técnicas Agropecuarias, 24(1), 2015.

S. S. Bhatti, V. Kumar, V. Sambyal, J. Singh, and A. K. Nagpal. Comparative Analysis of Tissue Compartmentalized Heavy Metal Uptake by Common Forage Crop: A Field Experiment. Catena, 160 (November 2016):185–193, 2018.

V. M.J. Grispen, H. J.M. Nelissen, and J. A.C. Verkleij. Phytoextraction with Brassica napus L.: A Tool for Sustainable Management of Heavy Metal Contaminated Soils. Environmental Pollution, 144(1):77–83, 2006.

M. del Pilar. Distribución de los metales pesados (V, Cr, Zn, Mn, Fe, Cd, Co, Ni, Cu y Pb) asociados a la fracción lodo de los sedimentos de fondo de la cuenca del Río Tuy, Venezuela, empleando extracción selectiva. Trabajo de Grado de Maestría, Universidad Central de Venezuela, 2014.

A. Meter, R. Atkinson, and B. Laliberte. Cadmium in Cacao from Latin America and the Caribbean, A Review of Research and Potential Mitigation Solutions. Biodiversity International, Roma, Italia, 2019.

G. Rauret, J. F. López, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure, and Ph. Quevauviller. Improvement of the BCR Three Step Sequential Extraction Procedure Prior to the Certification of New Sediment and Soil Reference Materials. Journal of Environmental Monitoring, 1:57–61,1998.

E. Chávez, Z. He, P. J. Stoffela, R. S. Mylavarapu, Y. C. Li, B. Moyano, and V. C. Baligar. Concentration of Cadmium in Cacao Beans and its Relationship with Soil Cadmium in Southern Ecuador. Science of the Total Environment, 533:205–214, 2015.

L. de Oliveira, G. de Souza, J. Richetti, P. de Souza, and J. Adriani. Köppen, Thornthwaite and Camargo Climate Classifications for Climatic Zoning in the State of Paraná, Brazil. Ciencia y Agrotecnología, 40(4):405–417, 2016.

J. Pérez, I. Castillo, and D. Paz. Asimilation of Cadmium and Lead for Nicotiana tabacum Variety "Criollo 98" Cultivated in Soil Artificiality Contamined. Part II: Cumuled of Heavy Metals. Centro Agrícola, 34(3):45–51, 2007.

D. Argüello, E. Chavez, F. Lauryssen, R. Vanderschueren, E. Smolders, and D. Montalvo. Soil Properties and Agronomic Factors Affecting Cadmium Concentrations in Cacao Beans: Nationwide Survey in Ecuador. Science of Total Environment, 649:120–127, 2019.

T. Smith and R. Smith. Elements of Ecology. Pearson, China, Ninth (9a) ed, 2014.

T. Ruiz, E. De Rodrigo, G. Lorenzo, E. Albano, R. Morán, and J. Sánchez. The Water Hyacinth, Eichhornia crassipes: An Invasive Plantthe Guadiana River Basin (Spain). Aquatic Invasions, 3(1):42–53, 2008.

R. Domènech and M. Vilà. Cortaderia Selloana Invasion Across a Mediterranean Coastal Strip. Acta Oecologica, 32(3):255–261, 2007.

L. Regalado, L. González, I. Fuentes, y R. Oviedo. Las plantas invasoras, introducción a los conceptos básicos. Bissea, 6(1):1–20, 2012.

F. Schmidt, M. Azzolini, and A. Molina. Scanning Cadmium Photosynthetic Responses Elephantopus Mollis for Potential Phytoremediation Practices. Water, Air, Soil Pollution, 225, 2015.

J. Silva, A. Fernández, M. Silva, C. Santos, and A. Lobato. Tolerance Mechanisms in Cassia alata Exposed to Cadmium Toxicity, a Potential Use for Phytoremediation. Photosynthetica, 55:495–504, 2017.

I. Regalado, A. Leiseca, Y. Cabrera, F. Franco, and C. Bulnes. Anatomical Changes Inspecies Cynodon nlemfuensis vanderhyst in Soils Contaminated by Heavy Metals. Revista Ciencias Técnicas Agropecuarias, 23(4):37–42, 2014.

T. Miliani, F. Espinoza, J. Gil, A. Baldizán, y Y. Diaz. Utilización de un bosque deciduo por bovinos a pastoreo. Zootecnia Tropical, 26(3), 2008.

R. Chaverri. El cultivo del tabaco. Editorial Universidad Estatal a Distancia, Costa Rica, Primer (1er) Ed, 1995.