Nota Técnica: Recuperación y reutilización de las escorias de aluminio en la industria secundaria Recibido: /octubre, 2019. Aceptado: /diciembre, 2019.
Contenido principal del artículo
Resumen
Esta nota técnica tiene como propósito presentar las investigaciones consultadas en relación con el tratamiento de las escorias de aluminio que se obtienen como productos secundarios en el procesamiento industrial de la bauxita para extraer el aluminio metálico. En virtud del riesgo ambiental, producida por la disposición indebida de los residuos de aluminio, científicos e ingenieros, preocupados por esta situación, han dedicado tiempo y recursos económicos para lograr la desactivación de las escorias de aluminio, empleando tres tecnologías principales: estabilización, vitrificación y sinterización. Estos procesos convierten químicamente las escorias de aluminio en materiales de uso doméstico o industrial con alto valor agregado. Estos métodos han sido utilizados con éxito en las industrias de la cerámica y la construcción, el tratamiento de aguas residuales y la extracción y purificación de metales, de gran importancia en metalurgia. La reutilización de las escorias de aluminio contribuye al ahorro de materiales no renovables, disminuye el volumen de desechos sólidos en los rellenos industriales y reduce la emisión de gases tóxicos y de invernadero (GHG).
Descargas
Detalles del artículo
Referencias
F.A. Cotton y G. Wilkinson. Química inorgánica avanzada. Editorial Limusa, México, 1999.
M. Mahinroosta and A. Allahverdi. Hazardous Aluminum Dross Characterization and Recycling Strategies: A Critical Review. Journal of Environmental Management, 223:452–468, 2018.
Deutscher Taschenbuch Verlag. DTV–Atlas Zur Chemie. GmbH & Co, Munchen, Germany, 1981.
I. Krstić, S. Zec, V. Lazarević, M. Stanisavljević, and T. Golubović. Use of Sintering to Immobilize Toxic Metals Present in Galvanic Sludge into a Stabile Glass-Ceramic Structure. Science of Sintering, 50(2):139–147, 2018.
A. Aydin and A. Aydin. Development of an Immobilization Process for Heavy Metal Containing Galvanic Solid Wastes by Use of Sodium Silicate and Sodium Tetraborate. Journal of Hazardous Materials, 270:35–44, 2014.
M. Stanisavljević, I. Krstić, and S. Zec. Ecotechnological Process of Glass-Ceramic Production from Galvanic Sludge and Aluminium Slag. Science of Sintering, 42(1):125–130, 2010.
V. Brauer, D. Klotz, P. Stingel, F. Wittig, and U.-D. Zimmermann. ES2593320T3. Procedimiento para Producir Material Transparente de Cerámica de Óxido de Aluminio, 2007.
F. Marazzi and M. Paganalli. ES2064033T3. Composicion Vitroceramica Adecuada para Revestir Artículos Cerámicos, 1995.
J.G. Hnat y A. Mathur. Processo para Produzir Azulejos, Produto e Azulejo de Ceramica Vítrea, 1999.
J.-Z. Wang. TW201300545A. Sintering Production of Aluminum Slag Lightweight Aggregates Method for Producing Lightweight Mixed Sintered Product Using Waste Material as Raw Material, 2012.
M. Kawasaki, Z. Kamimura, M. Sasaki, T. Takano, Koide. H., I. Yamashita, M. Akaha, K. Torii, and H. Matsuura. JP4462526B2. Method for Producing Light Weight Mixed Sintered Product Using Waste Material as Raw Material., 2010.
M. Kawasaki, Z. Kamimura, M. Sasaki, T. Takano, H. Koide, I. Yamashita, M. Akaha, K. Torii, and H. Matsuura. JP2002047074A. Method of Manufacturing Lightweight Porous Sintered Product Utilizing Waste as Raw Material, 2002.
F. Chargui, M. Hamidouche, H. Belhouchet, Y. Jorand, R. Doufnoune, and G. Fantozzi. Mullite Fabrication from Natural Kaolin and Aluminium Slag. Boletín de la Sociedad Española de Ceramica y Vidrio, 57(4):169–177, 2018.
R Sule and I Sigalas. Applied Clay Science Effect of Temperature on Mullite Synthesis from Attrition-Milled Pyrophyllite and α - Alumina by Spark Plasma Sintering. Applied Clay Science, 162(March):288–296, 2018.
X. Liu, B. Wang, and Q. Sun. CN107285774A. Preparation Method for Mullite by Using White Mud or Fly Ash and Prepared Mullite, 2017.
C. Li and Q. Zhang. CN107915491A. High Strength Refractory Brick for Cement Kilns and Method for Preparing High-Strength Refractory Brick, 2018.
H. Hu. CN107500788A. Thermal-Insulation Refractory Bricks and Preparation Method Thereof, 2017.
J. Eichler and C. Lesniak. Boron Nitride (BN) and BN Composites for High-Temperature Applications. Journal of the European Ceramic Society,
(5):1105–1109, 2008.
L. Chungsheng and Z. Qiang. CN107857598A. Boron Nitride Composite Magnesium-Aluminum Spinel Brick for Anti-Corrosion Cement Kiln Transition Zone and Preparation Method Thereof, 2018.
M. Liu, Y. Song, J. Liu, and G. Xue. CN104876556A. Manufacturing Method of Mullite-Boron Nitride Composite Ceramic Ide Sealing Plate for Thin-Strip Continuous Casting, 2015.
A. Mehta and R. Siddique. An Overview of Geopolymers Derived from Industrial By-Products. Construction and Building Materials, 127:183–198, 2016.
H.M. Khater. Development and Characterization of Sustainable Lightweight Geopolymer Composites. Ceramica, 65(373):153–161, 2019.
D. Yan, S. Chen, Y. Liu, and L. Xie. CN107663035A. Preparation Method for Aluminium Ash Based Geopolymer Binding Material, 2018.
C. Zheng. CN107244844A. Green Geopolymer Thermal-Insulation Material and Preparation Method thereof, 2017.
A. Font, M.V. Borrachero, L. Soriano, J. Monzó, and J. Payá. Geopolymer Ecocellular Concrete (GECC) Based on Fluid Catalytic Cracking Catalyst Residue (FCC) with Addition of Recycled Aluminium Poil Powder. Journal of Cleaner Production, 168:1120–1131, 2017.
M. Liu. CN106242620A. High-performance Foamed-Concrete Cement Material and Preparing Method Thereof, 2016.
Y. Zhang. CN108558283A. Foam Concrete for Decorative Engineering and Preparation Method thereof, 2018.
A.U. Elinwa and E. Mbadike. The Use of Aluminum Waste for Concrete Production. Journal of Asian Architecture and Building Engineering, 10(1):217–220, 2011.
M. Reddy and D. Neeraja. Mechanical and Durability Aspects of Concrete Incorporating Secondary Aluminium Slag. Resource-Efficient Technologies, 2(4):225–232, 2016.
N.G. Ozerkan, O.L. Maki, M.W. Anayeh, S. Tangen, and A.M. Abdullah. The Effect of Aluminium Dross on Mechanical and Corrosion Properties of Concrete. International Journal of Innovative Research in Science, Engineering and Technology, 3(3):9912–9922, 2014.
G. Mailar, R.N. Sujay, B.M. Sreedhara, D.S. Manu, Parameshwar. H., and K. Jayakesh. Investigation of Concrete Produced Using Recycled Aluminium Dross for Hot Weather Concreting Conditions. Resource-Efficient Technologies, 2(2):68–80, 2016.
X. Li, L. Wang, and H. Pan. CN107265910A. Preparation Method for Early-Strength Agent for Concrete, 2017.
P. Cao. CN107686305A. High-Performance Concrete, 2018.
J. Wang. CN108314403A. Concrete with High Tensile Strength, 2018.
X. Xi. CN108424056A. Acid and Alkali Resistant Concrete and Preparation Method
thereof, 2018.
F. Chen. CN108358559A. Concrete and Preparation Method thereof, 2018.
J. Wang. CN105198272A. Concrete Expansive Agent, 2015.
J. Wang. CN105130271A. Composite Concrete Expansive Agent, 2015.
E.M.M. Ewais, N.M. Khalil, M.S. Amin, Y.M.Z. Ahmed, and M.A. Barakat. Utilization of Aluminum Sludge and Aluminum Slag (Dross) for the Manufacture of Calcium Aluminate Cement. Ceramics International, 35(8):3381–3388, 2009.
M. Heikal, M.E.A. Zaki, and A. Alshammari. Preparation and Characterization of an Ecofriendly Binder from Alkali-activated Alumino-Silicate Solid Industrial Wastes Containing CKD and GGBS. Journal of Materials in Civil Engineering, 30(6):1–13, 2018.
F.A. Gómez-López, F.J. Alguacil, J.R. González, and M.S. Ramírez. US20180222764A1. Method for Obtaining Calcium Aluminate from Non-Saline Aluminum Slags, 2018.
Y. Zhang. Preparation Method of Clinker of Aluminate Cement, 2018.
F. Marquínez, A. Salinas, and J. Martínez. ES2343052A1. Procedimiento para Obtener Aluminato Cálcico a partir del Residuo Obtenido tras el Tratamiento de las Escorias Salinas Procedentes de la Producción de Aluminio Secundario, 2010.
M. Gallardo, J.M. Almanza, D.A. Cortés, J.C. Escobedo, and J.I. Escalante-García. Synthesis and Mechanical Properties of a Calcium Sulphoaluminate Cement made of Industrial Wastes. Materiales de Construcción, 64(315), 2014.
C. Ren, W. Wang, Y. Mao, X. Yuan, Z. Song, J. Sun, and X. Zhao. Comparative life Cycle Assessment of Sulfoaluminate Clinker Production Derived from Industrial Solid Wastes and Conventional Raw Materials. Journal of Cleaner Production, 167:1314–1324, 2018.
C. Ren, W. Wang, S. Wu, and Y. Yao. Preparation of Sulphoaluminate-Magnesium Potassium Phosphate Cementitious Composite Material Under Low-Temperature. Construction and Building Materials, 202:246–253,2019.
C. Ren, W. Wang, and G. Li. Preparation of High-Performance Cementitious Materials from Industrial Solid Waste. Construction and Building Materials, 152:39–47,2017.
Y. Zhang. CN108147686A. Preparation Method of Sulphoaluminate Cement Clinker, 2018.
P. Yao, Q. Wu, H. Han, X. Huang, and F. Song. CN105314902A. Method for Calcining Belite Sulphoaluminate Cement Clinker by Totally Utilizing Industrial Waste Residues, 2016.
N. Hua, Z. Liao, and W. Chen. CN106986569A. Preparation Method Using Aluminum Profile Factory Slag to Synthesize Anhydrous Calcium Sulphoaluminate Expanding Agent, 2017.
S. Yang, S. Wang, C. Gong, L. Lu, and X. Cheng. Constituent Phases and Mechanical Properties of Iron Oxide-additioned Phosphoa-luminate Cement. Materiales de Construccion, 65(318):1–8, 2015.
A. Qin and H. Cheng. CN107117840A. Phosphoaluminate Cement Produced from Industrial Waste Residues and Production Method of Phosphoaluminate Cement, 2017.
J. Hu. CN1498870A. Gelatinization Material of Phosphoaluminic Salt System, 2004.
F. Li, J.-Q. Jiang, S. Wu, and B. Zhang. Preparation and Performance of A High Purity Poly-Aluminum Chloride. Chemical Engineering Journal, 156(1):64–69, 2010.
G. Qing, T. Chen, S. Wu, B. Yuan, S. Zhuo, and D. Zheng. CN102923746A. Method for Preparing Polyaluminium Chloride, 2013.
D. Zhang, L. Shu, and J. Wang. CN105668601A. Method for Preparation of Polyaluminum Chloride from Aluminum-Containing Waste Residue, 2016.
W. Li and C. Zhou. CN104692556A. Electroplating Waste Water Treatment Method, 2015.
P. Zou, X. Wei, M. Wang, H. Zou, and F. Gu. CN104743594A. Production Device of Poly-Aluminum Chloride, 2015.
J. Cheng. CN106241989A. Multifunctional Wastewater Treating Agent and Application Thereof in Wastewater Treatment Process, 2016.
Y. Fu, J. Zhang, Y. Wang, and Y. Yu. Resource Preparation of Poly-Al-Zn-Fe (PAZF) Coagulant from Galvanized Aluminum Slag: Characteristics, Simultaneous Removal Efficiency and Mechanism of Nitrogen and Organic Matters. Chemical Engineering Journal, 203:301–308,2012.
Y. Fu, J. Wang, Y. Wang, and N. Lu. Application Performance of A New Coagulant in Wastewater Reuse. Water Science and Technology, 73(9):2101–2107, 2016.
L. Liu, G. Xu, R. Zeng, G. Yang, and L. Ding. CN104787864A. Preparation Method of Composite Decoloring Flocculant for Printing and Dyeing Wastewater Treatment, 2015.
Z. Zheng, X. Zhou, G. Lu, and Q. Wang. CN101591057A. Flocculating Agent Whit Deni-Triding Function for Treating Water and Preparation and Application thereof, 2011.
X. Yao, B. Yuan, R. Hao, J. Wang, and X. Yang. CN102849833A. High Performance Flocculant for Wastewater Treatment, 2013.
L. Shen, X. Xu, J. Shen, and P. Shen. CN104528901A. Poly Silicon Phosphorus Aluminum Ferrous Chloride and Preparation Method Thereof, 2015.
M. Yoldi, E. G. Fuentes-Ordoñez, S. A. Korili, and A. Gil. Zeolite Synthesis from Industrial Wastes. Microporous and Mesoporous Materials, 287:183–191, 2019.
R. Terzano, C. D’Alessandro, M. Spagnuolo, M. Romagnoli, and L. Medici. Facile Zeolite Synthesis from Municipal Glass and Aluminum Solid Wastes. Clean - Soil, Air, Water, 43(1):133–140, 2015.
R. Sánchez-Hernández, A. López-Delgado, I. Padilla, R. Galindo, and S. López-Andrés. One-Step Synthesis of NaP1, SOD and ANA from A Hazardous Aluminum Solid Waste. Microporous and Mesoporous Materials, 226:267–277, 2016.
D. Liu. CN101905892B. Process Method for Aluminium Ash Based Geopolymer Binding Material, 2010.
G. Crosti and M. Polvara. EP0392998A1. Method for Making Semiliquid Cast Aluminium Alloys, 1990.
T. Cai, H. Huang, H. Li, Y. Wang, and Q. Wu. CN207175477U. Production of 4A Zeolite Is With Aluminium Sediment Pretreatment of Raw Material Device, 2018.
D. Changming, S. Chao, X. Gong, T. Wang, and X. Wei. Plasma Methods for Metals Recovery from Metal-containing Waste. Waste Management, 77:373–387, 2018.
R. Saravanakumar, K. Ramachandran, L.G. Laly, P.V. Ananthapadmanabhan, and S. Yu- geswaran. Plasma assisted Synthesis of C-Alumina from Waste Aluminium dross. Waste Management, 2018.
L. Cobos and J.M. Zorriqueta. ES2144896A1. Method for Recovering Aluminium from Aluminium slag, 2000.
F.V. Mikhailovich. WO1995018872A1. Method of Processing Aluminium Waste, 1995.
Q. Zhang. CN1664119A. Slag From Aluminum Smelting for Making Clean Steel and Method for Preparing same, 2005.
H. Yamazaki. JP2000334549A. Production of High Cleanliness steel, 2000.
S. Zhuo, T. Chen, G. Li, P. Mao, and D. Zheng. CN106755743A. Preparation Method of High-Aluminum Slag-Modifier Pellets for Molten Steel Refining, 2017.
M. Drouet, F. Rivard, and P. Carabin. US2017009319A1. Energy efficient salt-free Recovery of Metal from dross, 2017.
H.Q. Liu. CN1824607A. Vanadium Extraction Technology of high Aluminium slag, 2006.